Math, asked by Anonymous, 5 months ago

ABCD is a square of side 5 cm. There are 2 Quadrants (ACD and ABD) forming inside the square. Find the area of the shaded region.

Kindly don't spam!! :)​

Attachments:

Answers

Answered by riya15042006
18

Given :

ABCD is a square

Sids of square = 5cm

To Find : Area of shaded region

Construction : Draw AP and AB

Solution :

Triangle PAB ,

AB = AP = BP = r

Triangle PAB is equilateral triangle

So , sides of equilateral triangle is 60°

Let AP be region 1

1 = area of sector PAB - area of triangle PAB

 -  >  \frac{60}{360} \pi {r}^{2}  -   \frac{ \sqrt{3} }{4}  {r}^{2}

 -  >  {r}^{2} ( \frac{\pi}{6}  -  \frac{ \sqrt{3} }{4} )

Let sector PAB be region 2

 -  >  \frac{tita}{360} \pi {r}^{2}

 -  >  \frac{60}{360} \pi {r}^{2}

 -  >  \frac{\pi {r}^{2} }{6}

Now region 1 + 2 =

 -  >  \frac{\pi {r}^{2} }{6}  -  \frac{ \sqrt{3} }{4}  {r}^{2}  + \frac{\pi {r}^{2} }{6}

 -  >  \frac{\pi {r}^{2} }{3}  -  \frac{ \sqrt{3} }{4}  {r}^{2}

Area of shaded region = Area of sector ADB - ( 1 + 2)

 -  >  \frac{\pi {r}^{2} }{4}  - ( \frac{\pi {r}^{2} }{3}  -  \frac{ \sqrt{3} }{4}  {r}^{2} )

 -  >  \frac{\pi {r}^{2} }{4}  -  \frac{\pi {r}^{2} }{3}  +  \frac{ \sqrt{3} }{4}  {r}^{2}

 -  >  \frac{ \sqrt{3} }{4}  {r}^{2}  -  \frac{\pi {r}^{2} }{12}

Total shaded region :

 -  > 2( \frac{ \sqrt{3} }{4}  {r}^{2} -  \frac{\pi {r}^{2} }{12}  )

 -  >  \frac{ \sqrt{3} }{2}  {r}^{2}  -  \frac{\pi {r}^{2} }{6}

 -  >  \frac{ {r}^{2} }{2} ( \sqrt{3}  -  \frac{\pi}{3} )

Side of square = 5cm

Total shaded region =

 -  >  \frac{ {5}^{2} }{2} ( \sqrt{3}  -  \frac{\pi}{3} )

 -  >  \frac{25}{2} ( \sqrt{3}  -  \frac{\pi}{3} )

 -  > 12.5( \sqrt{3}  -  \frac{\pi}{3} )

 -  > 8.525 \:  {cm}^{2}

I hope it helps u dear friend ^_^

Attachments:
Similar questions