Math, asked by Anonymous, 9 months ago

ABCD is a square with side 12 cm and E is a point in the interior of ABCD if angle EDC =angle ECD =15 degree then find the perimeter of triangle AEB​

Answers

Answered by amitnrw
3

Given : ABCD is a square with side 12 cm and E is a point in the interior of ABCD if angle EDC =angle ECD =15 degree

To find : perimeter of triangle AEB

Step-by-step explanation:

Draw a line segment PQ ║ AD & BC passing through E and intersecting CD at P  & AB at Q

PQ = 12 cm

PQ ⊥ DC & AB    

P  will be mid point of  CD as angle EDC =angle ECD  

=> ECD is an isosceles triangle & median & altitude coincide

=> DP = CP = CD/2 = 12/2 = 6 cm

Tan ∠ECP  =  PE/CP

Tan 15°  = PE/6

=> PE = 6 Tan 15°

QE = PQ - PE  =  12 - 6 Tan 15°  

AQ = BQ = AB/2 = 6 cm

BE² = AE² =  6²  + ( 12 - 6 Tan 15°)²

= 36 + 144 + 36Tan²15° - 144 Tan 15°

= 144 +  36  +  36Sin²15°/Cos²15° - 144Sin15°/Cos15°

= 144 +  ( 36 Cos²15°  + 36 Sin²15°  - 144Sin15°Cos15°)

= 144 + ( 36(Cos²15°  +   Sin²15° ) - 72* 2Sin15°Cos15°)

= 144 + ( 36(1 ) - 72*  Sin30°)

= 144 + ( 36 - 72*  (1/2))

= 144 + ( 36 - 36)

= 144

BE² = AE² = 144

=> BE = AE = 12

perimeter of triangle AEB​  = AE + BE + AB

= 12 + 12 + 12

= 36 cm

36 cm is the perimeter of triangle AEB​

Learn more:

perimeter of triangle AEB

https://brainly.in/question/19862878

Similar questions