Math, asked by skjiyad2005p9bhml, 1 year ago

ABCD is a trapezium in which AB=16 cm and DC=24 cm.If E and F are the midpoints of AD and BC .Prove that ar(ABFE)=9/11 ar(EFCD).

Answers

Answered by SerenaBochenek
29

Answer:

The proved is given below.

Step-by-step explanation:

Given ABCD is a trapezium in which AB=16 cm and DC=24 cm.If E and F are the midpoints of AD and BC. We have to prove that

ar(ABFE)=\frac{9}{11}ar(EFCD)

Let the height of trapezium is 2x cm

As EF is the mid segment of trapezium ABCD therefore the two trapezium ABFE and EFCD are two trapezium with height x cm and length of EF is the average of AB and CD.

i.e EF=\frac{AB+CD}{2}=\frac{16+24}{2}={40}{2}=20cm

Now, \text{Area of trapezium ABFE}=\frac{1}{2}\times (AB+EF)\times height

                                           =\frac{1}{2}\times (16+20)\times x=\frac{1}{2}\times 36\times x

\text{Area of trapezium EFCD}=\frac{1}{2}\times (EF+CD)\times height

                                           =\frac{1}{2}\times (20+24)\times x=\frac{1}{2}\times 44\times x

Hence, \frac{\text{Area of trapezium ABFE}}{\text{Area of trapezium EFCD}}=\frac{\frac{1}{2}\times 36\times x}{\frac{1}{2}\times 44\times x}=\frac{36}{44}=\frac{9}{11}

ar(ABFE)=\frac{9}{11}ar(EFCD)

Attachments:
Similar questions