Math, asked by anushii50, 2 months ago

ABCD is a trapezium in which AB || BC, AD = 10m, BC = 18m and CD = 17m. Find the are of trapeziumm.​

Attachments:

Answers

Answered by Ladylaurel
6

Correct Question:

ABCD is a trapezium in which AB || BC, AD = 10m, BC = 18m and CD = 17m. Find the area of trapezium.

Answer :-

  • The area of trapezium is 210m².

Step-by-step explanation:

To Find :-

  • The area of trapezium.

Solution:

Given that,

  • ABCD is a trapezium
  • AB || BC
  • CD = 17m
  • AD = 10m
  • BC = 18m

In the given figure, DE BC, therefore, DEC is a right triangle and the measure of EC is,

 \bigstar \:  \: \bf{(EC = BC - BE)} \:  \: \sf{and} \:  \: \{ \bf{BE = AD = 10m} \}

\sf{ \mapsto \: EC = BC - BE} \\  \\ \sf{ \mapsto \: EC = 18m - 10m} \\  \\ \sf{ \mapsto \: EC = (18 - 10)m} \\  \\ \mapsto \: \sf{ \orange{ \: EC = 8m}}

Hence, EC = 8m. Now, from DEC we will find out DE,

\boxed{\bf{DE = \sqrt{{DC}^{2} + {EC}^{2}}}}

Where,

  • DC = 17cm
  • EC = 8cm

 \mapsto \: \bf{DE = \sqrt{{DC}^{2} - {EC}^{2}}} \\  \\  \\ \mapsto \: \bf{DE = \sqrt{{17}^{2}  -  {8}^{2}}} \\ \\  \\  \mapsto \: \bf{DE = \sqrt{289 - {EC}^{2}}} \\  \\  \\ \mapsto \: \bf{DE = \sqrt{289 - 64}} \\  \\  \\ \mapsto \: \bf{DE = \sqrt{225}} \\  \\  \\ \mapsto \: \bf{ \red{DE = 15m}}

Hence, DE = 15m. Now, The area of trapezium :-

As we know that,

\boxed{\bf{Area \: of \: trapezium = \dfrac{1}{2} \times (AD + BC) \times DE}}

Where,

  • AD = 10m
  • BC = 18m
  • DE = 15m.

According the question,

\bf{\mapsto \: \dfrac{1}{2} \times (AD + BC) \times DE} \\ \\ \\ \bf{\mapsto \: \dfrac{1}{2} \times (10 + 18) \times 15} \\ \\ \\ \bf{\mapsto \: \dfrac{1}{2} \times 28 \times 15} \\ \\ \\ \bf{\mapsto \: \dfrac{1}{\cancel{2}} \times \cancel{28} \times 15} \\ \\ \\ \bf{\mapsto \: 1 \times 14 \times 15} \\ \\ \\ \bf{\mapsto \: 14 \times 15} \\ \\ \\ \bf{\mapsto \: \red{{210m}^{2}}}

Therefore, The area of trapezium is 210m².

Similar questions