ABCD is a trapezium in which AB is parallel to DC and it's diagonals intersect each other at the point O. Show that. AO/BO =CO/DO
Answers
Answered by
8
Given: □ABCD is a trapezium where, AB ll CD
Diagonals AC and BD intersect at point O.
Construction: Draw a line EF passing through O and also parallel to AB.
Now, AB ll CD, since by construction, EF ll AB ⇒ EF ll CD
Consider the ΔADC,
EO ll DC
Thus, by Basic proportionality theorem, (AE / ED) = (AO / OC) .... (i)
Now, consider Δ ABD,
EO ll AB,
Thus, by Basic proportionality theorem, (AE / ED) = (BO / OD) .... (ii)
From (i) and (ii), we have, (AO / OC) = (BO / OD) (since L.H.S of i and ii are equal)
Hence we proved that, (AO / OC) = (BO / OD)
plz mark as brainliest
Attachments:
Answered by
5
Answer:
this may help u this is the ans
Attachments:
Similar questions
Physics,
5 months ago
Math,
5 months ago
Business Studies,
11 months ago
English,
11 months ago
Science,
1 year ago