Math, asked by maansi34, 7 months ago

ABCD is cyclic ZB = (5x - 13° and 2D = (4x + 4)
ind the measure of angle B and angle D​

Answers

Answered by surekhavijay2203
3

Step-by-step explanation:

ANSWER

Let ABCD be a cyclic quadrilateral.

∠A=2x+4,∠B=y+3,∠C=2y+10,∠D=4x−5

In cyclic quadrilateral the sum of the opposite angles in 180°. Therefore,

∠A+∠C=180°

⇒2x+4+2y+10=180°

⇒2x+2y=166°

⇒x+y=83°→1

∠B+∠D=180°

⇒y+3+4x−5=180°

⇒4x+y=182°→2

Solving 1 and 2, we get

4x+y−x−y=182°−83°⇒3x=99°⇒x=33°

& 33°+y=83°⇒y=83°−33°=50°

∴∠A=2×33°+4=70°,∠B=50°+3=53°

∠C=2×50°+10=110°,∠D=4×33°−5=127°

Answered by MathsLover00
3

 \pink{given : } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ ABCD \:  \:  \: \:   is \:  \:  \:  \:  \:  \:  cyclic \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ b = 5x - 13 \\ \\  d = 4x + 4 \:  \:  \:  \\  \\  \blue{to \:  \:  \: find : } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ b \:  \:  \:  \:  \: nd \:  \:  \:  \:  \: d \\  \\  \red{solution : } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \green{since \:  \:  \: ABCD  \:  \:  \:  \: is  \:  \:  \:  \: cyclic} \\  \\ hence \:  \:  \:  \: oppoite \:  \:  \:  \: angles \:  \:  \:  \: are \\ supplementary \\  \\ b + d = 180 \\  \\ 5x - 13 + 4x + 4 = 180 \\  \\ 9x - 9 = 180 \\  \\ x - 1 = 20 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x = 20 + 1 \\  \\ \:  \:  \:  \:  \:  \:  \:  x = 21 \\  \\  \pink{hence} \\  \\ b = 5x - 13 \\  \\  \:  \:  \:  \:  \:  \:  \:  \: b = 5 \times 21 - 13 \\  \\ b = 105 - 13 \\  \\  \blue{b = 92 }\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ d = 4x + 4 \\  \\ \:  \:  \:  \:  \:  \:  \:  d = 4 \times 21 + 4 \\  \\ d = 84 + 4 \:  \\ \\  \blue{ d = 88} \:  \:  \:  \:  \:  \:  \:  \:  \:

HOPE IT HELPS TO U

Similar questions