Abcd is parallelogram in which Bc is produced to E such that CE=BC AE intersect CD at F if area DFB=3 cmsquare and area of parallelogram ABCD
Answers
Answered by
16
In △ADF and △ECF , we have
∠ADF = ∠ECF [alt.int.∠s]
AD = EC [∵ AD = BC and BC = EC]
∠DFA = ∠CFE [vert. opp. ∠s]
∴ By AAS congruence rule ,
△ADF ≅ △ECF
⇒ DF = CF [c.p.c.t.]
⇒ ar(△ADF) = ar(△ECF)
Now, DF = CF
⇒ BF is a median in △BDC
⇒ ar(△BDC) = 2 ar(△DFB)
= 2 × 3 = 6 cm2 [∵ar(△DFB) = 3 cm2]
Thus, ar(||gm ABCD) = 2 ar(△BDC)
= 2 × 6 = 12 cm2
∠ADF = ∠ECF [alt.int.∠s]
AD = EC [∵ AD = BC and BC = EC]
∠DFA = ∠CFE [vert. opp. ∠s]
∴ By AAS congruence rule ,
△ADF ≅ △ECF
⇒ DF = CF [c.p.c.t.]
⇒ ar(△ADF) = ar(△ECF)
Now, DF = CF
⇒ BF is a median in △BDC
⇒ ar(△BDC) = 2 ar(△DFB)
= 2 × 3 = 6 cm2 [∵ar(△DFB) = 3 cm2]
Thus, ar(||gm ABCD) = 2 ar(△BDC)
= 2 × 6 = 12 cm2
Answered by
8
Answer:
Hello mate
Refer to the attachment
Please mark me as the brainlist.
Attachments:
Similar questions
Hindi,
8 months ago
Social Sciences,
1 year ago
Science,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago