ABCD is quadrilateral. Is
AB + BC + CD + DA < 2 (AC + BD)?
Answers
Answer:
Hey mate ur answer is here....!!!follow me and mark as brainliest..!!
Step-by-step explanation:
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore,
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i)
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii)
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii) In Δ COD, CD < OC + OD ……….(iii)
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii) In Δ COD, CD < OC + OD ……….(iii) In Δ AOD, DA < OD + OA ……….(iv)
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii) In Δ COD, CD < OC + OD ……….(iii) In Δ AOD, DA < OD + OA ……….(iv) ⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii) In Δ COD, CD < OC + OD ……….(iii) In Δ AOD, DA < OD + OA ……….(iv) ⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD ⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)]
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii) In Δ COD, CD < OC + OD ……….(iii) In Δ AOD, DA < OD + OA ……….(iv) ⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD ⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)] ⇒ AB + BC + CD + DA < 2(AC + BD)
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third sideTherefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii) In Δ COD, CD < OC + OD ……….(iii) In Δ AOD, DA < OD + OA ……….(iv) ⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD ⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)] ⇒ AB + BC + CD + DA < 2(AC + BD) Hence, it is proved.
Answer:
AB + BC + CD + DA < 2 (AC + BD)ACBD