ABCD is quadrilateral.
Is AB+BC+CD+DA<2(AC+BD) ?
Answers
Answered by
14
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side Therefore, In Δ AOB, AB < OA + OB ……….(i) In Δ BOC, BC < OB + OC ……….(ii) In Δ COD, CD < OC + OD ……….(iii) In Δ AOD, DA < OD + OA ……….(iv) ⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD ⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)] ⇒ AB + BC + CD + DA < 2(AC + BD) Hence, it is prove.
Answered by
23
Given:
ABCD is quadrilateral
To find:
AB+BC+CD+DA<2(AC+BD) ?
STEP BY STEP EXPLANATION:
In a triangle, the sum of the lengths of either two sides is always greater than the third side.
Considering AABC,
AB + BC > CA ()
In ABCD,
BC + CD > DB (ii)
In ACDA,
CD + DA > AC (iii)
In ADAB,
DA + AB > DB (iv)
Adding equations (i), (ii), (ii), and (iv), we obtain
AB + BC + BC + CD + CD + DA + DA + AB > AC + BD +
AB + BC + BC + CD + CD + DA + DA + AB > AC + BD +AC + BD
2AB + 2BC + 2CD +2DA > 2AC + 2BD
2(AB + BC + CD + DA) > 2(AC + BD)
(AB + BC + CD + DA) > (AC + BD)
∴ Yes, the given expression is true.
Hence verified !
Attachments:
Similar questions