ABCD s a cyclic quadrilateral, if ∠A = 4x, ∠B= 3y, ∠C= 5x, and ∠D= 7y, then x and y are equal to--
Answers
Answered by
1
Step-by-step explanation:
Let ABCD be a cyclic quadrilateral.
∠A=2x+4,∠B=y+3,∠C=2y+10,∠D=4x−5
In cyclic quadrilateral the sum of the opposite angles in 180°. Therefore,
∠A+∠C=180°
⇒2x+4+2y+10=180°
⇒2x+2y=166°
⇒x+y=83°→1
∠B+∠D=180°
⇒y+3+4x−5=180°
⇒4x+y=182°→2
Solving 1 and 2, we get
4x+y−x−y=182°−83°⇒3x=99°⇒x=33°
& 33°+y=83°⇒y=83°−33°=50°
∴∠A=2×33°+4=70°,∠B=50°+3=53°
∠C=2×50°+10=110°,∠D=4×33°−5=127°
Attachments:
Answered by
6
Answer: hello buddy !!!!!
~>`)~~~~>`)~~~~>`)~~~~>`)~~~❤️❤️❤️❤️
In quadrilateral ABCD,
∠A+∠C=180°
⇒4y+20−4x=180°
−4x+4y=160°
⇒−x+y=40°
⇒−3x+3y=120°→1
∠B+∠D=180°
3y−5+7x+5=180°
7x+3y=180°→2
Solving equation 1 and 2, we get
7x+3y+3x−3y=180°−120°⇒10x=60°⇒x=6
& −6+y=40°⇒y=46°
∴∠A=4×46°+20=204°,∠B=3×46−5=133°
∠C=−4×6=−24°,∠D=7×6+5=47°
Step-by-step explanation:
hope it's help you!!!!!
Attachments:
Similar questions