Math, asked by piyush836919, 10 months ago

ABCDE is a regular pentagon and bisector of angleBAE meets CD at M. Of bisector of angle BCD meets AM at P. Find angle CPM

Plz help frnds....​

Answers

Answered by StarrySoul
59

\huge\bf{Solution: }

We know that the measure of each interior angle of regular Pentagon is 108°.

 \therefore \sf \angle \: BAM =  \dfrac{1}{2} (108 ^{ \circ} ) =  {54}^{o}

Sum of angles of quadrilateral is 360°. Therefore,In Quadrilateral ABCM, we have :

 \star  \: \sf \angle BAM +  \angle ABC  +  \angle BCM +  \angle CMA =   {360}^{o}

 \longrightarrow \sf \:  {54}^{o}  +  {108}^{o}  +  {108}^{o}  +  \angle  CMA =  {360}^{o}

 \longrightarrow \sf \:  \angle  CMA =  {90}^{o} ...(i)

Since CP is the bisector of angle BCD

 \therefore \sf \angle \: PCM =   {54}^{o}

Now,In Triangle CPM,we have :

 \star  \: \sf \angle \: PCM   +  \angle CMP +  \angle CPM =  {180}^{o}

 \longrightarrow \sf \:  {54}^{o}  +  {90}^{o}  +  \angle CPM =  {180}^{o}

 \longrightarrow \sf \:   \angle CPM =     \large\boxed{{ \sf \: 36}^{o} }

Attachments:
Answered by Anonymous
57

\huge{\boxed{\boxed{\tt{Answer:}}}}

Given:

ABCDE is a regular pentagon and bisector of angle BAE meets CD at M. Of bisector of angle BCD meets AM at P.

Find:

Find angle CPM.

Solution:

540° = total angle of pentagon.

108° = each angle degree.

Let "y" be the variable.

For quadrilateral ABCP:

\sf\rightarrow{\angle =54° PABPAB}

\sf\rightarrow{\angle=108° ABC}

\sf\rightarrow{\angle =54°BCP}

\sf\rightarrow{\angle=y° CPA}

ASM(Angle sum property) of a quadrilateral:

\sf\rightarrow{\angle  \: PAB +\angle  ABC + \angle BCP +\angle \: CPA = 360°}

\sf\rightarrow{54° + 108° + 54° + x° = 360°}

\sf\rightarrow { x° = 144°}

linear pair:

\sf\rightarrow{\angleCPM = 180° - y°}

\sf\rightarrow{\angle CPM = 36°}

Therefore, 36° is the angle CPM.

Attachments:
Similar questions