Math, asked by pandaXop, 1 month ago

∆ABD is a right triangle in which ∠A = 90° and AC ⟂ BD.

Prove \: that
1.) AB² = BC.BD

2.) AC² = BC.DC

3.) AD² = BD.CD​

Answers

Answered by Anonymous
21

Answer:

  • step by step solution is here

  • refer to the attachment.

Step-by-step explanation:

please mark me as a brainliest

Attachments:
Answered by ItzShrestha41
12

Step-by-step explanation:

\large\textsf{Given:}

★ ∠A = 90°

★ AC ⊥ BD

(i)\large\textsf{To Find:}

⇒ AB² = BC. BD

\large\textsf{Solution:}

In ∆BCA and ∆BAD,

∠BCA = ∠BAD ---- Each angle 90°

∠B = common

So, ∆BCA ∽ ∆BAD ----AA Similarity -(1)

Hence, \large\frac{BC}{AB}  =  \frac{AC}{AD}  =  \frac{AB}{BD} ----C.S.S.T

And, ∠BAC = ∠BDA ----C.A.S.T -(2)

So, \large\frac{BC }{AB}  =  \frac{AB}{BD}

∴ (AB)² = BC. BD

Hence Proved!

(ii) \large\textsf{To Find:}

⇒ AC² = BC. DC

\large\textsf{Solution:}

In ∆BCA and ∆DCA,

⇒ ∠BCA = ∠DCA ---Each angle 90°

∠BAC = ∠CDA ---from (2)

So, ∆BCA ~ ∆ACD ----AA Similarity -(3)

Hence, \large\frac{BC}{AC}   =  \frac{AC}{CD}  =  \frac{AB}{AD} ---C.S.S.T

So, \large\frac{BC}{AC}   =  \frac{AC}{CD}

∴ AC² = BC. DC

Hence proved!

(iii) \large\textsf{To Find:}

⇒ AD² = BD. CD

\large\textsf{Solution:}

From (1) and (2), we get-

⇒ ∆BAD ~ ∆ACD

Hence, \large\frac{AB}{AC}  =  \frac{AD}{CD}  =  \frac{BD}{AD}

So, AD² = BD. CD

Hence Proved!

Attachments:
Similar questions