Math, asked by pranjul7, 1 year ago

Abhay borrowed rs.16000 at 15/2% % per annum simple interest. on the same day he lent it to gurmeet at the same rate but compounded annualy. what does he gain at end of 2 years

Answers

Answered by aDitya200846
2

Answer:

it's your answer dood please follo me and mark me brainliest

Attachments:
Answered by vishal10495152
2

Step-by-step explanation:

Present value= ₹ 16000

Interest rate= 7 ½ % per annum= 15/2 %

Time=2 years

Now find compound interest,

To find the amount we have the formula,

Amount (A) = P (1+(R/100))^n

Where P is present value, r is rate of interest, n is time in years.

Now substituting the values in above formula we get,

∴ A = 16000 (1 + (15/2)/100)²

⇒ A = 16000 (1+3/40)²

⇒ A =16000 (43/40)²

⇒ A = 16000 (1894/1600)

⇒ A = ₹ 18490

∴ Compound interest = A – P

= 18490 – 16000 = ₹ 2490

Now find the simple interest,

Simple interest (SI) = PTR/100

Where P is principle amount, T is time taken, R is rate per annum

SI = (16000 × (15/2) × 2) / 100

= 160 × 15

= ₹ 2400

Abhay gains at the end of 2 year= (CI – SI)

= 2490 – 2400

= ₹ 90

Similar questions