Math, asked by Breaddd1, 6 months ago

Abolition of intermediaries' and 'Land ceiling act' are a part ofLet f : N → Y be a function defined as f (x) = 4x + 3, where, Y = {y ∈ N: y = 4x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse.

Give Explanation!​

Answers

Answered by SweetCharm
8

{ \huge{\boxed{\tt {\color{purple}{Answer}}}}}

★Checking for Inverse :-

\sf\mapsto{f(x) = 4x + 3}

\sf\mapsto{Let f(x) = y}

\sf\mapsto{y = 4x + 3}

\sf\mapsto{y – 3 = 4x}

\sf\mapsto{4x = y – 3}

\sf\mapsto{x = ( − 3)/4}

Let g(y) = ( − 3)/4}

where g: Y → N

Now find gof :-

\sf\mapsto{gof= g(f(x)}

\sf\mapsto{= g(4x + 3) }

\sf\mapsto{= [(4 + 3) − 3]/4}

\sf\mapsto{= [4 + 3 − 3]/4}

\sf\mapsto{=4x/4 = x = IN}

Now find fog :-

\sf\mapsto{fog= f(g(y))}

\sf\mapsto{= f [( − 3)/4] }

\sf\mapsto{=4[( − 3)/4] +3}

\sf\mapsto{= y – 3 + 3}

\sf\mapsto{= y + 0 = y = Iy}

Thus, gof = INand fog = Iy,

Hence, f is invertible

Also, the Inverse of f = g(y) = [ – 3]/ 4

{\huge{\underline{\small{\mathbb{\pink{HOPE\:HELPS\:UH :)}}}}}}

\red{\tt{sωєєтcнαям♡~}}

Answered by Anonymous
1

Answer:

{ \huge{\boxed{\tt {\color{red}{Answer}}}}}

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Checking for Inverse :-

f(x) = 4x + 3

Let f(x) = y

y = 4x + 3

y – 3 = 4x

4x = y – 3

x = ( − 3)/4

Let g(y) = ( − 3)/4

where g: Y → N

Now find gof :-

gof= g(f(x))

= g(4x + 3) = [(4 + 3) − 3]/4

= [4 + 3 − 3]/4

=4x/4

= x = IN

Now find fog :-

fog= f(g(y))

= f [( − 3)/4]

=4[( − 3)/4] +3

= y – 3 + 3

= y + 0

= y = Iy

Thus, gof = INand fog = Iy,

Hence, f is invertible

Also, the Inverse of f = g(y) = [ – 3]/ 4

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

{\huge{\underline{\small{\mathbb{\blue{HOPE\:HELP\:U\:BUDDY :)}}}}}}

Similar questions