Math, asked by ahanmishra44, 9 months ago

about 2 metre wide surrounds a circular pond of diameter 40 metre how many cubic centimetre of gravel are required to gravel the path to a depth of 7 ​

Answers

Answered by kka25175
0

Diameter of the pond=40m

Radius of the pond = 40/2m = 20m (r)

Width of the path = 2m

Radius of the path and pond together

= (20+2)m = 22m (R)

Pi=22/7

According to the question,

piR^2=pir^2+area of the path

=>area of the path = pi(R^2-r^2)

={22/7(22^2-20^2)} m^2

={22/7(22+20)(22-20)} m^2

=(22/7 × 42 × 2) m^2

=1848/7 m^2

Depth or height of the path = 7m

Thus, amount of gravel required for its construction = area of path×height

=(1848/7 ×7) m^3

=1847m^3

=(1848×1000000)cm^3

=1848000000 cm^3

=1.848×10^9 cm^3

Pls mark my ans as the brainliest

Answered by Anonymous
2

\sf\red{\underline{\underline{Answer:}}}

\sf{1848\times10^{6} \ cm^{3} \ of \ gravel \ is \ required}

\sf{to \ grave \ path \ of \ 7 \ m \ depth.}

\sf\orange{Given:}

\sf{\implies{Radius(r) \ of \ circular \ pond=20 \ m}}

\sf{\implies{Circular \ Path \ is \ 2 \ m \ wide}}

\sf\pink{To \ find:}

\sf{How \ much \ grave \ is \ required \ to \ gravel }

\sf{the \ path \ of \ 7 \ m}

\sf\green{\underline{\underline{Solution:}}}

\sf{Radius(r2) \ of \ pond \ with \ path=20+2=22 \ m}

\sf{Area \ of \ path}

\sf{= Area \ of \ pond \ with \ path \ - \ Area \ of \ pond}

\sf{=\pi\times \ r1^{2} \ - \ \pi\times \ r2^{2}}

\sf{=\pi(22^{2}-20^{2})}

\sf{=\frac{22}{7}\times(484-400)}

\sf{=\frac{22}{7}\times84}

\sf{=22\times12}

\sf{=264 \ cm^{2}}

\sf{Volume \ of \ gravel=Area \ of \ path\times \ Depth}

\sf{\therefore{Volume \ of \ gravel=264\times7}}

\sf{\therefore{Volume \ of \ gravel=1848 \ m^{3}}}

\sf{1 \ m^{3}=1000000 \ cm^{3}}

\sf{\therefore{Volume \ of \ gravel=1848\times1000000 \ cm^{3}}}

\sf{\therefore{Volume \ of \ gravel=1848\times10^{6} \ cm^{3}}}

\sf\purple{\tt{\therefore{1848\times10^{6} \ cm^{3} \ of \ gravel \ is \ required}}}

\sf\purple{\tt{to \ grave \ path \ of \ 7 \ m \ depth.}}

Similar questions