Math, asked by narindersandhu11110, 9 months ago

above is the question​

Attachments:

Answers

Answered by FIREBIRD
0

Step-by-step explanation:

We Have :-

A \: train \: travelling \: at \: a \: speed \: of \: 90 \: km \: h^{ - 1}  \\  \\  \\ Brakes \: are \: applied \: to \: it \: to \: stop \: it   \\  \\  \\ Brakes \: produce \: an \: accleration \: of \:  - 0.5 \: m \: s ^{ - 1}

To Find :-

Distance \: travelled \: before \: stopping

Formula Used :-

v^{2}  = u^{2}  + 2as

Solution :-

First \: we \: need \: to \: convert \: 90 \: km \: h^{ - 1}  \: into \: m \: s^{ - 1}  \\  \\  \\ 1 \: km \: h^{ - 1} =  \frac{1}{3.6} m \: s^{ - 1} \\  \\  \\ 90 \: km \: h^{ - 1} =  \frac{90}{3.6} m \: s^{ - 1} \\  \\  \\  = 25m \: s^{ - 1} \\  \\  \\ Now \: using \: the \: formula \\  \\  \\ v^{2}  = u^{2}  + 2as \\  \\  \\ (0)^{2}  = (25)^{2}  + 2( - 0.5)s \\  \\  \\ 0 = 625 - s \\  \\  \\ s = 625 \: m \\  \\  \\ The \: train \: stopped \: after \: travelling \: 625 \: m

Answered by MarshmellowGirl
10

 \large \underline{ \blue{ \boxed{ \bf \orange{Required \: Answer}}}}

Attachments:
Similar questions