Math, asked by attitudegirl80, 11 months ago

Above question:-


Don't spam ​

Attachments:

Answers

Answered by xItzKhushix
6

Question:-

  •  \frac{( \sqrt{3}  -  \sqrt{ 5})( \sqrt{5} +  \sqrt{3)}   }{7 - 2 \sqrt{5} }

____________________________________

\huge\bold{Solution:-}

\implies \frac{( \sqrt{3}  -  \sqrt{5})( \sqrt{5}   +  \sqrt{3}) }{7 - 2 \sqrt{5} }

\implies \frac{( \sqrt{3}  -  \sqrt{5})( \sqrt{3}   +  \sqrt{5}) }{(7 - 2 \sqrt{5} )}

\implies  \frac{( \sqrt{3} ) {}^{2} - ( \sqrt{5}) {}^{2}   }{(7 - 2 \sqrt{5}) } ......Since \: a {}^{2}  - b {}^{2}  = (a - b)(a + b)

\implies  \frac{3 - 5}{7 - 2 \sqrt{5} }  \times  \frac{7 + 2 \sqrt{5} }{7 + 2 \sqrt{5} }

\implies   \frac{ - 2(7 + 2 \sqrt{5}) }{49 - 20} .....Since \: a {}^{2}  - b {}^{2}  = (a - b)(a + b)

\implies \frac{ - 14 - 4 \sqrt{5} }{29}

Hence, solved!

#BAL

#AnswerWithQuality

Similar questions