absolute maximum of the function 3x + 5 in (6,12) is
Answers
Answered by
1
Answer:
Step-by-step explanation:
f(x)=3x
4
−8x
3
+12x
2
−48x+25[0,3]
f
′
(x)=12x
3
−24x
2
+24x−48
For critical points f
′
(x)=0
⇒12x
3
−24x
2
+24x−48=0
⇒12(x
3
−2x
2
+2x−4)=0
⇒12(x
2
+2)(x−2)=0
⇒x=2
f(0)=25
f(2)=48−64+48−96+25=−39
f(3)=243−216+108−144+25=16
Absolute maximum =25 at x=0
Absolute minimum =−39 at x=2.
Answered by
4
Given,
Solution,
Calculate the absolute maximum value of the function.
Hence the absolute maximum value of function is .
Similar questions