Math, asked by SAsian2028, 7 days ago

abx^2=(a-b)^2(x+1)
1) find x in terms of a and b
2)find a in terms of x and b

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

ab {x}^{2}  = (a - b)^{2} (x + 1)

 \implies \: (ab) {x}^{2}  = (a - b)^{2}x + (a - b)^{2} \\

 \implies \: (ab) {x}^{2}   - (a - b)^{2}x  -  (a - b)^{2}  = 0\\

Applying quadratic formula,

 \implies \: x =  \frac{ -  \{ -  (a - b)^{2} \} \pm \sqrt{ \{ - (a - b)^{2}\} ^{2}  - 4.(ab). \{ -  (a - b)^{2}\}}  }{2.(ab)}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm \sqrt{  (a - b)^{4}    + 4.(ab). (a - b)^{2}}  }{2.(ab)}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm \sqrt{ (a - b)^{2}\{ (a - b)^{2}    + 4ab \}}  }{2.(ab)}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm (a - b) \sqrt{  (a - b)^{2}    + 4ab }  }{2ab}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm (a - b) \sqrt{  a^{2}   + b^{2} - 2ab    + 4ab }  }{2ab}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm (a - b) \sqrt{  a^{2}   + b^{2}  +  2ab     }  }{2ab}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm (a - b) \sqrt{  (a   + b)^{2}     }  }{2ab}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm (a - b)  (a   + b)      }{2ab}  \\

 \implies \: x =  \frac{ (a - b)^{2}  \pm (a ^{2} - b^{2} )       }{2ab}  \\

Either   x =  \frac{ (a - b)^{2}  + (a ^{2} - b^{2} )       }{2ab}  \\ or x =  \frac{ (a - b)^{2}  - (a ^{2} - b^{2} )       }{2ab}  \\ [\tex]</p><p>[tex] \implies  x =  \frac{ a^{2}   +  b^{2} - 2ab  +  a ^{2} - b^{2}       }{2ab}   \:  \: or \:  \: x =  \frac{ a^{2}   +  b^{2} - 2ab   -   a ^{2}  +  b^{2}       }{2ab}  \\

 \implies  x =  \frac{ a^{2}   - 2ab  +  a ^{2}      }{2ab}   \:  \: or \:  \: x =  \frac{   b^{2} - 2ab     +  b^{2}       }{2ab}  \\

 \implies  x =  \frac{ 2a^{2}   - 2ab       }{2ab}   \:  \: or \:  \: x =  \frac{  2 b^{2} - 2ab           }{2ab}  \\

 \implies  x =  \frac{ 2a(a  -b   )    }{2ab}   \:  \: or \:  \: x =  \frac{  2 b(b - a    )      }{2ab}  \\

 \implies  x =  \frac{a  -b     }{b}   \:  \: or \:  \: x =  \frac{  b - a        }{a}  \\

Now, from the above values of x, we get,

 \implies  x =  \frac{a     }{b}  - 1  \:  \: or \:  \: x =  \frac{  b       }{a}  - 1 \\

 \implies  x + 1 =  \frac{a     }{b}    \:  \: or \:  \: x  + 1=  \frac{  b       }{a}   \\

 \implies a = b( x + 1)   \:  \: or \:  \: a =   \frac{  b       }{x + 1}   \\

Similar questions