Math, asked by ankit379, 1 year ago

abx2 = (a+b)2 × (x-1)

Answers

Answered by mittalsapna155
125

Answer:

Step-by-step explanation:

Attachments:
Answered by mysticd
65

Answer:

 \green {x = \frac{a+b}{a}\:Or\:x = \frac{a+b}{b} }

Step-by-step explanation:

 abx^{2}= (a+b)^{2} (x-1)

 \implies abx^{2}- (a+b)^{2} (x-1) = 0

 \implies abx^{2} -(a+b)^{2}x + (a+b)^{2}=0

/* Divide each term by ab ,we get

 \implies x^{2} -\frac{(a+b)}{ab} x + \frac{(a+b)^{2}}{ab}=0

\implies x^{2} - \frac{(a+b)}{a} x - \frac{(a+b)}{b} x + \frac{(a+b)^{2}}{ab} = 0

/* Splitting the middle term, we get

\implies x\left( x - \frac{a+b}{a}\right) -\frac{(a+b)}{b} \left( x - \frac{a+b}{a}\right)=0

 \implies \left( x - \frac{a+b}{a}\right)\left( x - \frac{a+b}{b}\right) = 0

 \implies x - \frac{a+b}{a}=0 \:Or \: x - \frac{a+b}{b} = 0

 \therefore  x = \frac{a+b}{a}\:Or\:x = \frac{a+b}{b}

•••♪

Similar questions