Acar has initial velocity of 72 km h It is accelerated at 2 ms Calculate the final velocity
and the distance covered after 3 seconds. What is the distance covered by the car in 3
second
Answers
Aɴsᴡᴇʀ
we have,
initial velocity, u = 72 km/h
first we have to convert the unit of velocity into m/s
_______________________________
so, now we have,
initial velocity, u = 20m/s
acceleration, a = 2 m/s²
time taken, t = 3 sec
final velocity, v = ?
distance, s = ?
now, by first equation of motion :
_______________________________
now, by second equation of motion:
_______________________________
Hence, final velocity of the car is 26 m/s and distance covered by the car is 69 m
_______________________________
☯︎ important :-
- first equation of motion : at = v - u
- second equation of motion : s = ut + ½ at²
- third equation of motion : v² = u² + 2as
Answer:
Aɴsᴡᴇʀ
we have,
initial velocity, u = 72 km/h
first we have to convert the unit of velocity into m/s
\begin{gathered}\begin{gathered} \bold{\implies u = \frac{ 72 \times 1 \cancel{000}}{36 \cancel{0 0}} m {s}^{ - 1} } \\ \\ \bold{\implies u = \frac{ \cancel{72} \times 10}{ \cancel{36}} \:m {s}^{ - 1} \: \: \: \: } \\ \\ \bold{ \implies u = 2 \times 10 \: m {s}^{ - 1} \: \: \: \: \: \: \:} \\ \\ \bold{\implies u = 20 \: m {s}^{ - 1} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \:} \end{gathered}\end{gathered}
⟹u=
36
00
72×1
000
ms
−1
⟹u=
36
72
×10
ms
−1
⟹u=2×10ms
−1
⟹u=20ms
−1
_______________________________
so, now we have,
initial velocity, u = 20m/s
acceleration, a = 2 m/s²
time taken, t = 3 sec
final velocity, v = ?
distance, s = ?
now, by first equation of motion :
\begin{gathered}\begin{gathered} \boxed{ \red {\bold{at = v - u}}} \\ \end{gathered}\end{gathered}
at=v−u
\begin{gathered}\begin{gathered} \bold{ : \implies 2 \times 3=v - 20 } \\ \\ \bold{ : \implies6 = v - 20 } \: \: \: \: \: \: \: \\ \\ \bold{ : \implies \: v = 6 + 20} \: \: \: \: \: \: \: \\ \\ \bold{ : \implies \: \boxed{ \pink {\bold{v = 26 \: m {s}^{ - 1} }}}}\end{gathered}\end{gathered}
:⟹2×3=v−20
:⟹6=v−20
:⟹v=6+20
:⟹
v=26ms
−1
_______________________________
now, by second equation of motion:
\begin{gathered}\begin{gathered} \boxed{ \red{\bold{s = ut + \frac{1}{2} a {t}^{2} }}} \\ \end{gathered}\end{gathered}
s=ut+
2
1
at
2
\begin{gathered}\begin{gathered} \bold{ : \implies s =20 \times 3 + \frac{1}{ \cancel{2}} \times \cancel{ 2} \times {3}^{2} } \\ \\ \bold{ : \implies s = 60 + 9} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \bold{ : \implies \: \boxed{ \pink{\bold{ s = 69 \: m}}}} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}\end{gathered}
:⟹s=20×3+
2
1
×
2
×3
2
:⟹s=60+9
:⟹
s=69m
_______________________________
Hence, final velocity of the car is 26 m/s and distance covered by the car is 69 m
_______________________________
☯︎ important :-
first equation of motion : at = v - u
second equation of motion : s = ut + ½ at²
third equation of motion : v² = u² + 2as