According to Pythagoras theorem, in a right angled triangle;
(_____)² = (base)² + (height)² .
what is the answer?
Answers
Answer:
Pythagoras Theorem is an important topic in Maths, which explains the relation between the sides of a right-angled triangle. It is also sometimes called the Pythagorean Theorem. The formula and proof of this theorem are explained here with examples.
Pythagoras theorem is basically used to find the length of an unknown side and angle of a triangle. By this theorem, we can derive base, perpendicular and hypotenuse formula. Let us learn mathematics of Pythagorean theorem in detail here.
Table of Contents:
Statement
Formula
Proof
Applications
Problems
Pythagoras Theorem Statement
Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides“. The sides of this triangle have been named as Perpendicular, Base and Hypotenuse. Here, the hypotenuse is the longest side, as it is opposite to the angle 90°. The sides of a right triangle (say a, b and c) which have positive integer values, when squared, are put into an equation, also called a Pythagorean triple.

History
The theorem is named after a greek Mathematician called Pythagoras.
Pythagoras Theorem Formula
Consider the triangle given above:
Where “a” is the perpendicular,
“b” is the base,
“c” is the hypotenuse.
According to the definition, the Pythagoras Theorem formula is given as:
Hypotenuse2 = Perpendicular2 + Base2
c2 = a2 + b2
The side opposite to the right angle (90°) is the longest side (known as Hypotenuse) because the side opposite to the greatest angle is the longest.

Consider three squares of sides a, b, c mounted on the three sides of a triangle having the same sides as shown.
By Pythagoras Theorem –
Area of square “a” + Area of square “b” = Area of square “c”
Example
The examples of theorem and based on the statement given for right triangles is given below:
Consider a right triangle, given below:

Find the value of x.
X is the side opposite to right angle, hence it is a hypotenuse.
Now, by the theorem we know;
Hypotenuse2 = Base2 + Perpendicular2
x2 = 82 + 62
x2 = 64+36 = 100
x = √100 = 10
Therefore, the value of x is 10.
Right Angle Triangle Theorem
Types Of Triangles
Triangles Class 9
Triangles For Class 10
Class 10 Maths
Important Questions Class 10 Maths Chapter 6 Triangles
Pythagoras Theorem Proof
Given: A right-angled triangle ABC, right-angled at B.
To Prove- AC2 = AB2 + BC2
Construction: Draw a perpendicular BD meeting AC at D.

Proof:
We know, △ADB ~ △ABC
Therefore, ADAB=ABAC (corresponding sides of similar triangles)
Or, AB2 = AD × AC ……………………………..……..(1)
Also, △BDC ~△ABC
Therefore, CDBC=BCAC (corresponding sides of similar triangles)
Or, BC2= CD × AC ……………………………………..(2)
Adding the equations (1) and (2) we get,
AB2 + BC2 = AD × AC + CD × AC
AB2 + BC2 = AC (AD + CD)
Since, AD + CD = AC
Therefore, AC2 = AB2 + BC2
Hence, the Pythagorean theorem is proved.
Note: Pythagorean theorem is only applicable to Right-Angled triangle.
hope it helps you
The correct answer is Hypotenuse.
- According to the Pythagoras theorem, in a right-angled triangle, (hypotenuse)² = (base)² + (height)².
- Pythagoras theorem is basically used to find the length of an unknown side and angle of a triangle. By this theorem, we can derive the base, perpendicular, and hypotenuse formula.
- Pythagoras theorem states that “In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides".
#SPJ2