Accountancy, asked by kp6338745, 10 months ago

accounting is usefull only to owner​

Answers

Answered by rajgorhetarthi43
1

(i) First Find the value of LHS

Using Identity (a + b) 2 = a2 + 2ab + b2 for finding the value of 

In the given expression a = 3x and b = 6

On substituting these values in the above identity, we get

⇒     (i)

On subtracting 84x in eqn (i), we get

Now Find the value of RHS

Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of 

In the given expression a = 3x, b = 7

On substituting these values in the above identity, we get

⇒      (ii)

Therefore from eqn (i) and eqn (ii) we found that LHS = RHS

(ii) First Find the value of LHS

Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of 

In the given expression a = 9p, b = 5q

On substituting these values in the above identity, we get

⇒      (i)

On Adding 180pq in eqn (i), we get

Now Find the value of RHS

Using Identity (a + b)2 = a2 + 2ab + b2 for finding the value of 

In the given expression a = 9p, b = 5q

On substituting these values in the above identity, we get

⇒      (ii)

Therefore from eqn (i) and eqn (ii) we found that LHS = RHS

(iii) First Find the value of LHS

Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of 

In the given expression a = 

On substituting these values in the above identity, we get

⇒      (i)

On Adding 2mn in eqn (i), we get

Therefore we found that LHS = RHS

(iv) First Find the value of LHS

Using Identity (a + b) 2 = a2 + 2ab + b2 for finding the value of 

In the given expression a = 4pq and b = 3q

On substituting these values in the above identity, we get

⇒      (i)

Using Identity (a - b) 2 = a2 - 2ab + b2 for finding the value of 

In the given expression a = 4pq, b = 3q

On substituting these values in the above identity, we get

⇒      (ii)

On subtracting eqn (ii) from eqn (i), we get

Therefore we found that LHS = RHS

(v) Using Identity (a + b)(a - b) = a2 - b2     (i)

Applying above identity in (b - c) (b + c), we get

     (ii)

On Applying above identity in (c - a) (c + a), we get

     (iii)

On adding eqn (i), (ii) and (iii), we get

i.e. LHS = RHS

Hence Proved!

Similar questions