Math, asked by Anonymous, 1 year ago

ACCURATE ANSWERS EXPECTED

if \: x = 2 +  \sqrt{3}  \\ find \:  \: the \ \:  value  \: \: of \:  {x}^{3}  +  \frac{1}{x {}^{3} }

Answers

Answered by TheLifeRacer
13
Hey !!!

x = 2 +√3 --------1)

by using rationalising process ...

1 /x =1/ 2 + √3 × 2 -√3 /2-√3

=> 2- √3 / (2)²- (√3)²

=> 2 -√3 /4-3


hence , 1 /x = 2-√3-------2)

if we adding equation 1 and 2 we got

x + 1/x =2 + √3 + 2- √3 = 4 -----3

by using (a + b)² = a² + b² + 2ab

now , (x + 1/x )² = x² +( 1/x)² + 2x ×1/x

(4 )² = x² + 1/x² +2

16-2 =x² + 1/x² ----------4)

Now, as we know that ...

a³ + b³ ={( a+ b)( a² +b² -ab)}

so like that ,

x³+ 1/x³ = (x+1/x)(x² + 1/x² -x×1/x)}

x³ +1/x³ ={ (4) (14 -1 )} ▶[ from equation 3 ,and 4 ]


x³ + 1/x³ = 4×13

x³ +1/x³ = 52 Answer. ..

hope it helps !!!

#rajukumar111


Anonymous: Are Waahhh !!
Anonymous: Thank you so much
Anonymous: ^_^
Answered by rohitkumargupta
11
HELLO DEAR,

X = 2+√3


in cubing both side

we get,

we know that:-

(a+b)³ = a³+b³+3ab(a+b)

x³ = 2³+√3³+3×2×√3(2+√3)

=> 8+3√3 +6√3(2+√3)

=> 8+3√3+12√3+18

=> (26+15√3)


 {x}^{3}  +  \frac{1}{ {x}^{3} }  \\  \\  =  > 26 + 15\sqrt{3}  +  \frac{1}{26 + 15 \sqrt{3} }  \\  \\  =  > 26 + 15\sqrt{3}   +  \frac{(  26    - 15 \sqrt{3} )}{(26 + 15 \sqrt{3}) ( 26   -  15 \sqrt{3}) }  \\  \\  =  > 26 + 15 \sqrt{3}  +  \frac{26 - 15 \sqrt{3} }{ 676 - 675}  \\  \\  =  > 26 + 15 \sqrt{3}  +  \frac{26 - 15 \sqrt{3} }{1}  \\  \\  =  > 26 + 15 \sqrt{3}  + 26 -  15\sqrt{3}  \\  \\ 26 + 26 = 52
I HOPE ITS HELP YOU DEAR,
THANKS

Anonymous: Tysm !!
rohitkumargupta: sawagat hai apka
Anonymous: what ??
rohitkumargupta: welcome
rohitkumargupta: or kya
rohitkumargupta: hehe
rohitkumargupta: thanks for brainliest
Anonymous: Welcome .
Similar questions