aCosA - bSinA=c then prove that aSinA + bCosA =+_ underRoot a^2+b^2 - c^2
Answers
Answered by
82
UR ANSWER IS ATTACHED
Attachments:
Answered by
51
∴ squaring both sides,
... a² cos² x + b² sin² x - 2ab sin x cos x = c²
∴ a² ( 1 - sin² x ) + b² ( 1 - cos² x ) - 2ab sin x cos x = c²
∴ a² - a² sin² x + b² - b² cos² x - 2ab sin x cos x = c²
∴ a² + b² - c² = a² sin² x + b² cos² x + 2ab sin x cos x
∴ a² + b² - c² = ( a sin x + b cos x )²
∴ a sin x + b cos x = ± √( a² + b² - c² ). .................................. Q.E.D....
Please mark it as brainiest answer ................
... a² cos² x + b² sin² x - 2ab sin x cos x = c²
∴ a² ( 1 - sin² x ) + b² ( 1 - cos² x ) - 2ab sin x cos x = c²
∴ a² - a² sin² x + b² - b² cos² x - 2ab sin x cos x = c²
∴ a² + b² - c² = a² sin² x + b² cos² x + 2ab sin x cos x
∴ a² + b² - c² = ( a sin x + b cos x )²
∴ a sin x + b cos x = ± √( a² + b² - c² ). .................................. Q.E.D....
Please mark it as brainiest answer ................
Similar questions