acosA+bsinA=x and asinA-bcosA=y then x square +y square =?
Answers
Answer:
If acosA + bsinA=x and asinA - bcosA=y, then x square +y square = a^2 + b^2
Step-by-step explanation:
Given acosA + bsinaA = x ...( i )
asinA - bcosA = y ...( ii )
Square on both sides of ( i ) and ( ii ) one by one.
= > ( acosA + bsinA )^2 = x^2
= > ( acosA )^2 + ( bsinA )^2 + 2ab( cosA.sinA ) = x^2
= > a^2 cos^2 A + b^2 sin^2 A + 2ab( sinA . cosA ) = x^2 ...( iii )
= > ( asinA - bcosA )^2 = y^2
= > ( asinA )^2 + ( bcosA )^2 - 2ab( sinA . cosA ) = y^2
= > a^2 sin^2 A + b^2 cos^2 A - 2ab( sinA . cosA ) = y^2 ...( iv )
Now, add ( iii ) and ( iv ),
= > a^2 cos^2 A + b^2 sin^2 A + 2ab( sinA . cosA ) + a^2 sin^2 A + b^2 cos^2 A - 2ab( sinA . cosA ) = x^2 + y^2
= > a^2 cos^2 A + b^2 cos^2 A + b^2 sin^2 A + b^2 cos^2 A + 2ab( sinA . cosA ) - 2ab( sinA . cosA ) = x^2 + y^2
= > a^2( cos^2 A + sin^2 A ) + b^2( sin^2 A + cos^2 A ) = x^2 + y^2
From the identities of trigonometry, we know that the numeric value of sin^2 A + cos^2 A is 1 .
Now,
= > a^2 ( 1 ) + b^2( 1 ) = x^2 + y^2
= > a^2 + b^2 + x^2 + y^2
Therefore the value of x^2 + y^2 is a^2 + b^2