acostheta + bsin theta = m and asin theta - bcos theta= n, then asquare + b square =
Answers
Given :-
m = a cos theta - b sin theta
Therefore,
m² = (a cos theta - b sin theta)²
m²= (a² Cos²theta) + (b² Sin²theta) - (2ab Cos theta Sin theta) --------------- 1
Also given ,
n = a sin theta + b cos theta
Therefore,
n² = (a sin theta + b costheta)²
n²= (a²Sin²theta) + (b²Cos²theta) + (2ab Cos theta Sin theta) --------------- 2
Adding 1 and 2
m²+ n² = (a²Cos²theta) + (b² Sin²theta) - (2ab Cos theta Sin theta) + (a² Sin²theta) + (b² Cos²theta) + (2ab Cos theta Sin theta)
Cancelling (2ab Cos theta Sin theta) and - (2ab Cos theta Sin theta)
m² + n² = (a²Cos²theta) + (b² Sin²theta) +
(a² Sin²theta) + (b² Cos²theta)
Bringing a² terms and b2 terms together,
m² + n² = (a² Cos²theta) + (a²Sin²theta) + (b²Sin²theta) + (b²Cos²theta)
m² + n² = a³ (Cos²theta + Sin²theta) + b²(Sin²theta + Cos²theta)
By the identity Sin²theta + Cos²theta = 1
m² + n² = a²(1) + b² (1)
m²+ n²= a²+ b²
Answer:
m² = (a cos theta - b sin theta)²
m²= (a² Cos²theta) + (b² Sin²theta) - (2ab Cos theta Sin theta) ------------ 1
Also given ,
n = a sin theta + b cos theta
Therefore,
n² = (a sin theta + b costheta)²
n²= (a²Sin²theta) + (b²Cos²theta) + (2ab Cos theta Sin theta) ------------ 2
Adding 1 and 2
m²+ n² = (a²Cos²theta) + (b² Sin²theta) - (2ab Cos theta Sin theta) + (a² Sin²theta) + (b² Cos²theta) + (2ab Cos theta Sin theta)
then, Cancelling,
(2ab Cos theta Sin theta) and - (2ab Cos theta Sin theta)
m² + n² = (a²Cos²theta) + (b² Sin²theta) +
(a² Sin²theta) + (b² Cos²theta)
Bringing a² terms and b2 terms together,
m² + n² = (a² Cos²theta) + (a²Sin²theta) + (b²Sin²theta) + (b²Cos²theta)
m² + n² = a³ (Cos²theta + Sin²theta) + b²(Sin²theta + Cos²theta)
By the identity Sin²theta + Cos²theta = 1
m² + n² = a²(1) + b² (1)
m²+ n²= a²+ b²
Hence proved.