Action of higher concentration of carbon dioxide in insects
Answers
Answered by
0
Atmospheric concentrations of carbon dioxide have been steadily rising, from approximately 315 ppm (parts per million) in 1959 to a current atmospheric average of approximately 385 ppm (Keeling et al.,2009). Current projections are for concentrations to continue to rise to as much as 500–1000 ppm by the year 2100 (IPCC 2007).
While a great deal of media and public attention has focused on the effects that such higher concentrations of CO2 are likely to have on global climate, rising CO2 concentrations are also likely to have profound direct effects on the growth, physiology, and chemistry of plants, independent of any effects on climate (Ziska 2008). These effects result from the central importance of CO2 to plant metabolism. As photosynthetic organisms, plants take up atmospheric CO2, chemically reducing the carbon. This represents not only an acquisition of stored chemical energy for the plant, but also provides the carbon skeletons for the organic molecules that make up a plants’ structure. Overall, the carbon, hydrogen and oxygen assimilated into organic molecules by photosynthesis make up ~96% of the total dry mass of a typical plant (Marschner 1995). Photosynthesis is therefore at the heart of the nutritional metabolism of plants, and increasing the availability of CO2 for photosynthesis can have profound effects on plant growth and many aspects of plant physiology.
While a great deal of media and public attention has focused on the effects that such higher concentrations of CO2 are likely to have on global climate, rising CO2 concentrations are also likely to have profound direct effects on the growth, physiology, and chemistry of plants, independent of any effects on climate (Ziska 2008). These effects result from the central importance of CO2 to plant metabolism. As photosynthetic organisms, plants take up atmospheric CO2, chemically reducing the carbon. This represents not only an acquisition of stored chemical energy for the plant, but also provides the carbon skeletons for the organic molecules that make up a plants’ structure. Overall, the carbon, hydrogen and oxygen assimilated into organic molecules by photosynthesis make up ~96% of the total dry mass of a typical plant (Marschner 1995). Photosynthesis is therefore at the heart of the nutritional metabolism of plants, and increasing the availability of CO2 for photosynthesis can have profound effects on plant growth and many aspects of plant physiology.
Similar questions
Computer Science,
8 months ago
Computer Science,
8 months ago
Business Studies,
8 months ago
Physics,
1 year ago
English,
1 year ago
Math,
1 year ago