Math, asked by ariadnaxyriz, 1 month ago

Activity
Graph the following inequalities
1. x+ 5 >
2. 7y <x+2
3. 2x + 3y > 3
4. 2y <3x +5
5. y 23

Answers

Answered by singhprince0457
1

We have, 3x + 2y ≥24,

3x +y ≤ 15, x ≥ 4

Now let’s plot lines 3x + 2y = 24, 3x + y = 15 and x = 4 on the coordinate plane.

Line 3x + 2y = 24 passes through the points (0, 12) and (8, 0).

Line 3x+y = 15 passes through points (5,0) and (0, 15).

Also line x = 4 is passing through the point (4, 0) and vertical.

For (0, 0), 3(0) + 2(0) – 24 < 0.

Therefore, the region satisfying the inequality 3x + 2y≥ 24 and (0, 0) lie on the opposite of the line 3x + 2y = 24.

For (0), 3(0) + (0) – 15 ≤ 0.

Therefore, the region satisfying the inequality 3x +y ≤ 15 and (0,0) lie on the same side of the line 3x +y = 15.

The region satisfying x ≥ 4 lies to the right hand side of the line x = 4.

These regions are plotted as shown in the following figure

It is clear from the graph that there is no common region corresponding to these inequalities.

Hence, the given system of inequalities has no solution.

Similar questions