Math, asked by ashutosh456789, 1 year ago


acube breketemay b minus C ka whole cube plus b cube bracket Mec- a ka whole cube plus c cube bracket a
minus b ka whole cube factorise

Answers

Answered by newton82
94

 {a}^{3}  {(b - c)}^{3}  +  {b}^{3}  {(c - a)}^{3}  +  {c}^{3}  {(a - b)}^{3}  \\ a(b - c) + b(c - a) + c(a - b) \\  = ab - ac + bc - ab + ab - bc \\  = 0 \\ so \\  {(a(b - c)})^{3} +  {(b(c - a))}^{3} +  {(c(a - b))}^{3}  = 3(ab - ac)(bc - ab)(ab - bc).

jayprakashagarp5uguy: Not satisfied ans
jayprakashagarp5uguy: As correct ans is 3abc(b-c)(c-a)(a-b)
jayprakashagarp5uguy: But i dont know how to do,only i know the correct ans
Answered by Tulsi4890
1

The answer to the above question is 3abc(a-b)(b-c)(c-a).

Given:

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3

To Find:

The solution or to simplify the above-given equation.

Solution:

We know that if x+y+z=0, then x^3+y^3+z^3=3xyz.

Let,

x=a(b-c)\\y=b(c-a)\\z=c(a-b)

Therefore,

x+y+z=a(b-c)+b(c-a)+c(a-b)\\x+y+z=ab-ac+bc-ba+ca-cb\\x+y+z=0

Hence, x^3+y^3+z^3=3xyz

Therefore,

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3  =3((a(b-c))(b(c-a))(c(a-b)))

a^3(b-c)^3+b^3(c-a)^3+c^3(a-b)^3 = 3abc(a-b)(b-c)(c-a)

Hence, 3abc(a-b)(b-c)(c-a) is the required solution.

#SPJ3

Similar questions