Math, asked by kodurissaranya2497, 5 months ago

acute angle between the curves x²+y²=50 and x²=5y is​

Answers

Answered by amansharma264
6

EXPLANATION.

Acute angle between the curves,

⇒ x² + y² = 50 ⇒ (1).

⇒ x² = 5y ⇒ (2).

Put the value of equation (1) in equation (2), we get.

⇒ y² + 5y = 50.

⇒ y² + 5y - 50 = 0.

⇒ y² + 10y - 5y - 50 = 0.

⇒ y (y + 10) - 5(y + 10).

⇒ (y - 5)(y + 10) = 0.

⇒ y = 5  and  y = - 10.

Put the value of y in equation, we get.

Put y = 5 in equation, (2) we get.

⇒ x² = 5(5).

⇒ x² = 25.

⇒ x = √25.

⇒ x = ± 5.

⇒ x² + y² = 50.

Differentiate w.r.t x we get,

⇒ 2x + 2y.dy/dx = 0.

⇒ 2y.dy/dx = -2x.

⇒ dy/dx = -2x/2y.

⇒ dy/dx = -x/y.

Put x = -5 in equation, we get.

⇒ dy/dx = -(-5)/5.

⇒ dy/dx = 1. = m₁.

Put x = 5 in equation, we get.

⇒ dy/dx = -5/5.

⇒ dy/dx = -1 = m₁

M₁ = (1,-1).

⇒ x² = 5y.

Differentiate w.r.t x we get.

⇒ 2x = 5.dy/dx +  y.

⇒ 2x = 5.dy/dx(y).

⇒ 2x/5y = dy/dx.

Put the value of x = -5 in equation, we get.

⇒ 2(-5)/5(5) = dy/dx.

⇒ -10/25 = dy/dx.

⇒ -2/5 = dy/dx.

Put the value of x = 5 in equation, we get.

⇒ 2(5)/5(5) = dy/dx.

⇒ 10/25 = dy/dx.

⇒ 2/5 = dy/dx.

⇒ M₂ = (-2/5,2/5).

As we know that,

⇒ Tan∅ = | m₁ - m₂/1 + m₁.m₂|.

⇒ Tan∅ = 1 - (-2/5)/1 + (1)(-2/5).

⇒ Tan∅ = 1 + 2/5/1 - 2/5.

⇒ Tan∅ = 5 + 2/5/5 - 2/5.

⇒ Tan∅ = 7/5/3/5.

⇒ Tan∅ = 7/3.

⇒ ∅ = tan⁻¹(7/3).


Anonymous: Perfect as always ✌️
Answered by Anonymous
3

✿...A N S W E R...✿

acute angle between the curves

x²+y²=50 ( 1 )

x²=5y = 2 ( 2 )

put the value of equation ( 1 ) in equation ( 2 )

we get,

➩y² + 5y = 50

➩y² + 5y - 50 = 0

➩y² + 10y - 5y - 50 = 0

➩y ( y + 10 ) - 5 ( y + 10 )

➩ ( y - 5 ) ( y + 10 ) = 0

➩ y = 5 & y = -10

put the value of y in equation

put y = 5 in equation (2) we get ,

⇝x ² = 5 ( 5 )

⇝x² = 25

⇝x = √25

⇝x = + 5

⇝x ² + y ² = 50

➢ 2× + 2y. Dy/dx + y

➢2 x = 5.dy / dx ( y)

➢2× /5y =dy/dx

➢2(5)/5(5) = dy / dx

➢-10/25 = dy / dx

➢2/5 = dy / dx

➢M² = (- 2/5,2/5)

Similar questions