Math, asked by MehekSoni, 1 year ago

AD and BC are equal perpendiculars to a line segment AB. If AD and BC are on different sides if AB prove that CD bisects AB.

Answers

Answered by kspaneserpcd1d9
4
let the line CD cut AB in E. Triangles CAE and DBE are congruent because angle C eqls agle D (alternate) , angle A =angle B =90, AD and BC are equal. Hence AE=BE

kspaneserpcd1d9: welcome
Answered by MissAngry
2

Question :-

AD and BC are equal perpendiculars to a line segment AB (see figure). Show that CD bisects AB.

Answer :-

In ∆BOC and ∆AOD, we have

∠BOC = ∠AOD  

BC = AD [Given]

∠BOC = ∠AOD [Vertically opposite angles]

∴ ∆OBC ≅ ∆OAD [By AAS congruency]

⇒ OB = OA [By C.P.C.T.]

i.e., O is the mid-point of AB.

Thus, CD bisects AB.

Plz mrk as brainliest ❤

Similar questions