AD,BE and CF,the altitude of triangle ABC are equal.Prove that triangle ABC is an equilateral triangle..
Answers
Answered by
467
••••••••••••••••••••••••••••••••••••••••••••••••
Hola Yash is here for help you
See my all steps carefully and I hope this answer is definitely helpful for u :)
••••••••••••••••••••••••••••••••••••••••••••••••
• In triangle ABE and triangle ACF
BE=CF (Given)
∠A=∠A (Common)
∠AEB=∠AFC=90°
By AAS congruent rule ABE ≅ ACF
AB=AC (CPCT)
Similarly
BCF ≅ ABD
AB=BC
AC=BC
AB=AC
AB = BC = AC..... Proved
©© The triangle is a equaliteral triangle ©©
Thanks :)
Hope this is helpful for u :)
••••••••••••••••••••••••••••••••••••••••••••••••
Hola Yash is here for help you
See my all steps carefully and I hope this answer is definitely helpful for u :)
••••••••••••••••••••••••••••••••••••••••••••••••
• In triangle ABE and triangle ACF
BE=CF (Given)
∠A=∠A (Common)
∠AEB=∠AFC=90°
By AAS congruent rule ABE ≅ ACF
AB=AC (CPCT)
Similarly
BCF ≅ ABD
AB=BC
AC=BC
AB=AC
AB = BC = AC..... Proved
©© The triangle is a equaliteral triangle ©©
Thanks :)
Hope this is helpful for u :)
••••••••••••••••••••••••••••••••••••••••••••••••
lisa25:
thankyou so much...❤
Answered by
72
See, area(abc)=0.5×ad×bc
area(ABC)=0.5×be×ac
area(ABC)=0.5×cf×ab
So all three are equal
As cf=be=ad
Area(ABC)=0.5×cf×ab=0.5×cf×ac=0.5×cf×bc
So we will get ab=BC
=ac
So it is equilateral
area(ABC)=0.5×be×ac
area(ABC)=0.5×cf×ab
So all three are equal
As cf=be=ad
Area(ABC)=0.5×cf×ab=0.5×cf×ac=0.5×cf×bc
So we will get ab=BC
=ac
So it is equilateral
Similar questions