ad is a median of a triangle abc prove that ab+ac>2ad
Answers
Answered by
4
according to Pythagoras property
ab^2-bd^2=ad^2
so automatically
ab-bd=ad
ac^2-cd^2=ad^2
so automatically
ac-cd=ad
so add equation 1,2
ac+an+(be+CD) =2ad
ac+ab= 2ad-bc
so thus proved ac+an is greater than 2ad
ab^2-bd^2=ad^2
so automatically
ab-bd=ad
ac^2-cd^2=ad^2
so automatically
ac-cd=ad
so add equation 1,2
ac+an+(be+CD) =2ad
ac+ab= 2ad-bc
so thus proved ac+an is greater than 2ad
anjeneyadas:
where are you from
Answered by
0
❤❤❤❤❤
❤❤❤❤❤
Attachments:
Similar questions