AD is a median of the triangle ABC.if AB^2+AC^2=P.(BD^2+AD^2) then options are (a)p=2,(b)p=1/2,(c)p=1/4 and (d)p=3
Answers
Question:
AD is a median of the ∆ABC.
If AB² + AC² = p•( BD² +AD² ) , then find the value of p .
Options:-
(a) p = 2
(b) p = 1/2
(c) p = 1/4
(d) p = 3
Answer:
option(a)
p = 2
Note:
• The line segment which joins a vertex and the mid point of its opposite side of a triangle is called Median .
• A triangle has three medians corresponding to each side.
• Pythagoras theorem:- In a right angled triangle , the square of the hypotenuse is equal to the sum of squares of other two sides.
Solution:
Given:-
AD is the median of the ∆ABC , thus ;
BD = CD ---------(1)
Construction:-
Let's draw an altitude AE from the vertex A to the side BC .
Now,
Applying Pythagoras theorem in right angled
∆ABE , ∆ADE and ∆ACE , we have ;
AB² = AE² + BE² --------(2)
AC² = AE² + CE² --------(3)
AD² = AE² + DE² --------(4)
Now ,
Adding eq-(2) and eq-(3) , we get;
=> AB² + AC² = AE² + BE² + AE² + CE²
=> AB² + AC² = 2AE² + BE² + CE²
=> AB² + AC² = 2(AD²- DE²) + BE² + CE²
{ using eq-(4) }
=> AB² + AC² = 2AD²- 2DE² + (BD-DE)² + (CD+DE)²
{ since, BE = BD - DE and CE = CD + DE }
=> AB² + AC² = 2AD²- 2DE² + BD² + DE² - 2BD•DE
+ CD² + DE² + 2CD•DE
=> AB² + AC² = 2AD²- 2DE² + 2DE² + BD² + CD²
- 2BD•DE + 2CD•DE
=> AB² + AC² = 2AD² + BD² + CD² - 2BD•DE
+ 2CD•DE
=> AB² + AC² = 2AD² + BD² + BD² - 2BD•DE
+ 2BD•DE
{ using eq-(1), CD = BD }
=> AB² + AC² = 2AD² + 2BD²
=> AB² + AC² = 2(AD² + BD²) ------------(5)
Now,
Comparing eq-(5) with the given condition ,
AB² + AC² = p(AD² + BD²) , we get ;
p = 2.
Hence,
The required value of p is 2 .