AD is median of ∆ABC and E is the mid point of AD. BE produced meets AC in F. Proof that AF = 1/3 AC
Answers
Answered by
3
HEY DEAR ... ✌️
_______________________
_______________________
Here's ur answer :-
Given AD is the median of ΔABC and E is the midpoint of AD Through D, draw DG || BF In ΔADG, E is the midpoint of AD and EF || DG By converse of midpoint theorem we have F is midpoint of AG and AF = FG → (1) Similarly, in ΔBCF D is the midpoint of BC and DG || BF G is midpoint of CF and FG = GC → (2) From equations (1) and (2), we get AF = FG = GC → (3) From the figure we have, AF + FG + GC = AC AF + AF + AF = AC [from (3)] 3 AF = AC AF = (1/3) AC
______________________
HOPE , IT HELPS ... ✌️
_______________________
_______________________
Here's ur answer :-
Given AD is the median of ΔABC and E is the midpoint of AD Through D, draw DG || BF In ΔADG, E is the midpoint of AD and EF || DG By converse of midpoint theorem we have F is midpoint of AG and AF = FG → (1) Similarly, in ΔBCF D is the midpoint of BC and DG || BF G is midpoint of CF and FG = GC → (2) From equations (1) and (2), we get AF = FG = GC → (3) From the figure we have, AF + FG + GC = AC AF + AF + AF = AC [from (3)] 3 AF = AC AF = (1/3) AC
______________________
HOPE , IT HELPS ... ✌️
Attachments:
tanay1438:
if you give me fig. it will be helpfull
Similar questions