Math, asked by clanvenom99, 8 months ago

AD is median of ΔABC, where coordinates of B and C are respectively (4, 1) and (1, 6), then coordinates of D are​

Attachments:

Answers

Answered by mysticd
1

 Given \: AD \: is \: a \: median \: of \: \triangle ABC, \\Where \: Coordinates \:of \: B \: and \: C \\are \: (4,1) \: and \: (1,6) \: respectively

 Let \: B(4,1) = ( x_{1}, y_{1}) \: and \\C(1,6)= ( x_{2}, y_{2})

 Coordinates \: D \\= Mid \: point \: of \: BC \\= \Big( \frac{x_{1} + x_{2}}{2} , \frac{y_{1} + y_{2}}{2} \Big) \\= \Big( \frac{4+1}{2} , \frac{1+6}{2}\Big) \\= \Big( \frac{5}{2} , \frac{7}{2}\Big)

Therefore.,

 \red{Coordinates \: D}\green{ = \Big( \frac{5}{2} , \frac{7}{2}\Big)}

•••♪

Similar questions