Math, asked by adityav789, 2 months ago

Add (2x3+7y3−8z3), (4x3−3y3+11z3) and (−6z3+2y3−9x3).

Answers

Answered by ramakanthwkkwkry683
0

Answer:

⠀⠀⠀⣠⠴⠶⠦⣄⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⣸⣿⣿⣿⣶⣤⡑⢄⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⣿⣟⡛⠛⠻⢿⣿⣮⣧⠀⠀⠀

⠀⠀⣤⣤⣀⣀⡙⠿⠇⠀⠀⠀⠹⣿⣿⣇⠀⠀

⠀⠀⣿⣿⣿⣿⣿⣿⣷⣶⣦⣤⣄⠸⣿⣿⡀⠀

⠀⠀⣿⣿⠉⠉⠛⠻⣿⣿⣿⣿⣿⠀⢿⣿⡇⠀

⠀⠀⣿⣿⡄⠀⠀⠀⣿⣿⠀⠀⠈⠁⢸⣿⡇⠀

⠀⠀⢻⣿⣧⡀⠀⢀⣿⣿⣧⡀⠀⢀⣾⣿⠇⠀

⠀⠀⠈⢿⣿⣿⣿⣿⣿⡏⢿⣿⣿⣿⣿⡟⠀⠀

⠀⠀⠀⠀⠙⠿⠿⠿⠋⠀⠀⠙⠛⠛⠉⠀⠀⠀

⠀⠀⣼⣿⣿⣿⣶⣶⣤⣤⣄⠀⠀⠀⠀⠀⠀⠀

⠀⠀⢿⡿⠛⠿⠿⢿⣿⣿⣿⡀⠀⠀⠀⠀⠀⠀

⠀⠀⠈⣷⣄⣀⠀⠀⠀⠈⠉⠁⠀⠀⠀⠀⠀⠀

⠀⠀⣾⣿⣿⣿⣿⣿⣶⣶⣦⠀⠀⠀⠀⠀⠀⠀

⠀⠀⢻⣏⠉⠛⠛⠻⠿⢿⣿⡄⠀⠀⠀⠀⠀⠀

⠀⠀⢠⣽⣶⣤⣄⣀⡀⢠⡄⠀⠀⠀⠀⠀⠀⠀

⠀⠀⣿⣿⣿⣿⣿⣿⣿⣿⣿⣶⡄⠀⠀⠀⠀⠀

⠀⠀⠙⢧⡀⠈⠉⠉⠛⢻⡿⠿⣧⠀⠀⠀⠀⠀

⠀⠀⣴⣾⣿⣶⣶⣤⣤⣸⣇⡀⠀⠀⠀⠀⠀⠀

⠀⠀⢿⡿⠿⠿⣿⣿⣿⣿⣿⣿⡆⠀⠀⠀⠀⠀

⠀⠀⠈⢳⣄⣀⣀⠀⠉⢹⡟⠛⠓⠀⠀⠀⠀⠀

⠀⠀⣰⣿⣿⣿⣿⣿⣶⣄⠁⠀⠀⠀⠀⠀⠀⠀

⠀⠀⣿⣿⠋⢩⡉⠙⠿⣿⡆⠀⠀⠀⠀⠀⠀⠀

⠀⠀⢻⣿⠀⢸⣷⣀⡀⣸⣿⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠈⢻⣆⠈⢿⣿⣿⣿⠏⠀⠀⠀⠀⠀⠀⠀

⠀⠀⣿⣶⣾⣷⣦⣍⣉⡁⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠻⠿⢿⣿⣿⣿⣿⣿⣿⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⢈⣩⣿⣟⠛⠇⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⣾⣿⣿⣿⠧⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠘⠿⠍⠥⠃⠀⠀

Answered by anilchhataria2777
0

Step-by-step explanation:

Explanation:

Starting with:

4

x

3

+

3

y

3

=

6

Differentiate both sides with respect to

x

:

12

x

2

+

9

y

2

d

y

d

x

=

0

Solve for

d

y

d

x

(See Note 1 , below)

d

y

d

x

=

12

x

2

9

y

2

, so

d

y

d

x

=

4

x

2

3

y

2

Differentiate again, using the quotient rule to get

d

2

y

d

x

2

=

(

8

x

)

(

3

y

2

)

(

4

x

2

)

(

6

y

d

y

d

x

)

(

3

y

2

)

2

=

24

x

y

2

+

24

x

2

y

d

y

d

x

9

y

4

I prefer to remove the common factor before proceeding:

=

24

x

y

y

x

d

y

d

x

9

y

4

Now, replace

d

y

d

x

=

24

x

y

y

x

4

x

2

3

y

2

9

y

4

=

24

x

y

y

+

4

x

3

3

y

2

9

y

4

Now, simplify the complex fraction using your chosen technique.

=

24

x

y

(

y

+

4

x

3

3

y

2

)

(

3

y

2

)

(

9

y

4

)

(

3

y

2

)

=

24

x

y

(

3

y

3

+

4

x

3

27

y

6

)

I see that I can reduce the fraction, but before I do there's a step I can do to simplify a lot.

Way back at the start of the problem, we were told that

4

x

3

+

3

y

3

=

6

So the numerator of our fraction is

6

.

(See Note 2 below.)

=

24

x

y

(

6

27

y

6

)

Now simplify the quotient:

d

2

y

d

x

2

=

16

x

3

y

5

Note 1

Although we could differentiate again immediately, I prefer not to.

If we differentiate without solving for

d

y

d

x

first, we will need to be careful to disti nguish

(

d

y

d

x

)

2

from

d

2

y

d

x

2

. We get

24

x

+

18

y

d

y

d

x

d

y

d

x

+

9

y

2

d

2

y

d

x

2

=

0

.

It works, but it's kind of a mess.

Note 2

This step is typical of certain kinds of implicit differentiation second derivative problems. If you remember to look for it, it can simplify the result considerably.

Similar questions