add (√3+2√2) and (2√3-5√2)
Answers
Answered by
0
Answer:
- add (√3+2√2) and (2√3-5√2)
Step-by-step explanation:
- (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2
- 3
- −5
- 2
- )+(
- 3
- +2
- 2
- ) =3(\sqrt{3}-\sqrt{2})=3(
- 3
- −
- 2
- )
- Step-by-step explanation:
- We have,
- (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2
- 3
- −5
- 2
- )+(
- 3
- +2
- 2
- )
- To add, (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})=?(2
- 3
- −5
- 2
- )+(
- 3
- +2
- 2
- )=?
- ∴ (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2
- 3
- −5
- 2
- )+(
- 3
- +2
- 2
- )
- =2\sqrt{3}-5\sqrt{2}+\sqrt{3}+2\sqrt{2}=2
- 3
- −5
- 2
- +
- 3
- +2
- 2
- =(2\sqrt{3}+\sqrt{3})+(-5\sqrt{2}+2\sqrt{2})=(2
- 3
- +
- 3
- )+(−5
- 2
- +2
- 2
- )
- =3\sqrt{3}-3\sqrt{2}=3
- 3
- −3
- 2
- Taking 3 as common, we get
- =3(\sqrt{3}-\sqrt{2})=3(
- 3
- −
- 2
- )
- The addition of (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2
- 3
- −5
- 2
- )+(
- 3
- +2
- 2
- ) =3(\sqrt{3}-\sqrt{2})=3(
- 3
- −
- 2
- )
- Hence, (2\sqrt{3}-5\sqrt{2})+(\sqrt{3}+2\sqrt{2})(2
- 3
- −5
- 2
- )+(
- 3
- +2
- 2
- ) =3(\sqrt{3}-\sqrt{2})=3(
- 3
- −
- 2
- )
please make it a brainliest answer
Similar questions