: Add: 7xy + 5yz - 3zx, 4yz + 9zx - 4y , -3x2 + 5x - 2xy.
Answers
(7xy+5yz-3zx) + (4yz+9zx-4y) + (-3zx+5x-2xy)
= 7xy+5yz-3zx+4yz-9zx-4y-3zx-5x+2xy
= 7xy+2xy+5yz+4yz-3zx-9zx-3zx-4y-5x
= 9xy+9yz-15zx-4y-5x
Concept:
A mathematical statement in which two expressions are rendered equal to one another is known as an algebraic equation. A variable, coefficients, and constants make up an algebraic equation in most cases.
Take a look at the following algebraic expressions:
y - 6x² - zy + 5x³, xy - 3x - 12yz + 5x³, and 5xy - 3x² - 12y +5.
First, add a new symbol to the supplied algebraic expressions.
(xy - 3x - 12yz + 5x³) + (y - 6x² - zy + 5x³) = (5xy - 3x² - 12y + 5x)
Open the brackets in step 2 and multiply the signs.
5x + xy - 3x - 12yz + 5x³ + y - 6x² - zy + 5x³ = 5xy - 3x² - 12y + 5x
Step 3: Next, put similar terms together.
(5xy + xy) + (-3x² – 6x²) + (-12y + y) + (5x – 3x) + (-12yz – yz) + (5x³ + 5x³)
Add the coefficients in step four. The variables' exponents should remain unchanged.
6xy – 9x² – 11y + 2x – 13yz + 10x³
Given:
7xy + 5yz - 3zx, 4yz + 9zx - 4y , -3x² + 5x - 2xy.
Find:
Add: 7xy + 5yz - 3zx, 4yz + 9zx - 4y , -3x² + 5x - 2xy.
Solution:
(7xy+5yz-3zx) + (4yz+9zx-4y) + (-3x²+5x-2xy)
= 7xy+5yz-3zx+4yz-9zx-4y-3x²-5x+2xy
= -3x²+7xy+2xy+5yz+4yz-3zx-9zx-4y-5x
= -3x²+9xy+9yz-12zx-4y-5x
Therefore. the addition of the polynomial is = -3x²+9xy+9yz-9zx-4y-5x
#SPJ3