Math, asked by simpisingh317, 2 months ago

add the following expressions​

Attachments:

Answers

Answered by nickkaushiknick
0

Answer:

\frac{7}{15}x and \frac{5x^2}{2}

Step-by-step explanation:

(i)

\frac{2}{5}x+\frac{2}{3}x+\frac{-4}{5}x

First of all lets make their denominators equal. Here, LCM of denominators is 15 so, to make denominators 15

(\frac{3}{5}x\times \frac{3}{3})+(\frac{2}{3}x\times \frac{5}{5})+(\frac{-4}{5}x\times \frac{3}{3})

=\frac{9}{15}x+\frac{10}{15}x+\frac{-12}{15}

=\frac{9x+10x-12x}{15}

=\frac{7x}{15} or \frac{7}{15}x

(ii)

\frac{3}{4}x^2 +5x^2 +(-3x^2)+(-\frac{1}{4}x^2)

LCM of denominators is 4. Lets make the denominators of each term equal

\frac{3}{4}x^2 +(5x^2\times \frac{4}{4}) +(-3x^2\times \frac{4}{4})+(-\frac{1}{4}x^2)

=\frac{3}{4}x^2 +\frac{20}{4}x^2 +\frac{-12}{4}x^2+(-\frac{1}{4}x^2)

=\frac{3x^2+20x^2-12x^2-x^2}{4}

=\frac{10x^2}{4}=\frac{5x^2}{2}

Similar questions