Math, asked by mmir86599, 2 months ago

add the following factors 5/7+7/5​

Answers

Answered by Anonymous
539

ɢɪᴠᴇɴ:

  • Add 5/7 and 7/5

ꜱᴛᴇᴩꜱ ᴛᴏ ꜱᴏʟᴠᴇ:

  • The given terms have different denominators. For adding any two fractions, they must have the same denominators.
  • So, first we will make the denominators equal by the LCM (Least Common Multiple) method.

ᴛᴀᴋɪɴɢ ʟᴄᴍ:

*LCM of 7 & 5 = 35

  • After taking LCM, we will multiply denominators of both the fraction by such a number that it results in 35 (The LCM value that we got)

ᴍᴀᴋɪɴɢ ᴅᴇɴᴏᴍɪɴᴀᴛᴏʀꜱ ᴇqᴜᴀʟ:

~~~~~~~~~ \sf \dashrightarrow \sf \frac{5}{7}  \times  \frac{5}{5} =  \frac{25}{35}

~~~~~~~~~ \sf \dashrightarrow \sf \frac{7}{5}  \times  \frac{7}{7} =  \frac{49}{35}

ɴᴏᴡ:

  • Since we got the denominators equal of both the fractions, now we can add them!

ᴀᴅᴅɪɴɢ:

~~~~~~~~~ \sf \dashrightarrow \sf \frac{5}{7} +  \frac{7}{5} =  \frac{25}{35} +  \frac{49}{35}

~~~~~~~~~ \sf \dashrightarrow \sf \frac{25}{35} +  \frac{49}{35} =  \frac{25 + 49}{35}

~~~~~~~~~ \sf \dashrightarrow \sf \frac{74}{35}

ꜰɪɴᴀʟ ᴀɴꜱᴡᴇʀ:

  • {\boxed{\sf{74/35}}} is the answer we got.

★Converting it into Mixed Fraction:

~~~~~~~~~{\boxed{\sf{74/35 = 2 \frac{4}{35}}}}

________________________________

Answered by Anonymous
21

 \huge {\fbox{\sf {\underline{answer}}}}

 \large{ \sf \green{\underline{solution: }}}

 \sf{ \frac{5}{7}  +  \frac{7}{5} }

_____________________________________

  \sf{let \: the \: denominator \: be \: same.}

 \sf \therefore \:  \frac{5 \times 5}{7 \times 5 }  =  \frac{25}{35} ...(1)

 \sf \therefore \:  \frac{7  \times 7}{5 \times 7}  =  \frac{49}{35} ....(2)

 \sf{ \: add \: the \: fraction \: (1) \: and \: (2).}

 \frac{25}{35}  +  \frac{49}{35}  =  \frac{74}{35}

 \sf  \: \frac{5}{7}  +  \frac{7}{5}  =  \boxed { \sf \green{ \frac{74}{35} }}

     \sf{ \:  \:  \:  \: \:  \:  \:  ▬▬▬▬▬▬▬▬▬▬ \:  \:  \:  \: \:  \:  \:  }

Similar questions