Computer Science, asked by nagagoutham258, 11 months ago

Add the numbers (base 2): (1.01) * (2^3) + (1.11) * (2^1)

Answers

Answered by Anonymous
0

Answer:

1.01 * 8 + 1.11 * 2

8.08 + 2.22

10.30

hope it may helpful

Answered by hukam0685
1

Explanation:

Given:

(base 2): (1.01) * (2³) + (1.11) * (2^1)

To find: Addition

Solution:

To simplify the expression

first convert 2³ and 2 in binary i.e. base 2

 {2}^{3}  = 8 = (1000)_2 \\ 2 = (10)_2 \\  \\

Multiply

(1.01)_2\times (1000)_2 \\  =  >  \\ 1.01 \\  \times 1000 \\  -  -  -  -  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: 000 \\   \:  \:  \:  \:  \:  \:  \: 000 \times  \\ \:  \:  \:  000 \times \times   \\ 101 \times  \times  \times  \\  -  -  -  -  -  -  \\ (1010.00)_2 \\  -  -  -  -  -

Multiply

(1.11)_2 \times (10)_2 \\  \\ 1.11 \\  \times 10 \\  -  -  -  -  \\  \:  \:  \: 000 \\ 111 \times  \\  -  -  -  -  -  \\ (11.10)_2 \\  -  -  -  -

Now add both

(1010.00)_2 \\ \:  +  (11.10)_2 \\  -  -  -  -  -  \\ (1101.10)_2 \\  -  -  -  -

Thus,

(1.01) \times (2^3) + (1.11)  \times  (2^1)=(1101.10)_2 \\  \\

Hope it helps you.

To learn more on brainly:

1)Convert decimal 64 to binary.

https://brainly.in/question/682603

2)बाइनरी संख्या से ऑक्टल संख्या में तथा ऑक्टल संख्या से बाइनरी संख्या में बदलने की विधि समझाइए ।

https://brainly.in/question/16033153

Similar questions