Math, asked by Sneha1344, 5 days ago

Add the sum of (6m ^ 2 - n ^ 2 + 1) and (4m ^ 2 - n ^ 2) to the product of (6m + n) and (2m - 3n)
*answer in formula pls*​

Answers

Answered by nitin15052006
0

Answer:

=  {10m}^{2}   -  {5n}^{2}  - 20mn + 12m + 1

Step-by-step explanation:

sum \: of \:  ({6m}^{2}  -  {n}^{2}  + 1)  \: and \:   ({4m}^{2}  -  {n}^{2} )

 =  {6m}^{2}  -  {n}^{2}  + 1 +  {4m}^{2}  -  {n}^{2}   \\  =  {10m}^{2}  -  {2n}^{2}  + 1 -  -  -  -  > (1)

product \: of \: (6m + n) \: and \: (2m - 3n)

 = 6m(2m - 3n) + n(2m - 3n) \\  = 12m - 18mn + 2mn -  {3n}^{2}  \\  = 12m - 20mn -  {3n}^{2}  -  -  -  -  > (2)

adding \: (1) \: and \: (2) \\ =  {10m}^{2}  -  {2n}^{2}  + 1 + 12m - 20mn -  {3n}^{2} \\  =  {10m}^{2}   -  {5n}^{2}  - 20mn + 12m + 1

Similar questions