Math, asked by somapragyarout, 26 days ago

add this fraction 5/4 + 3/7

Answers

Answered by prernaahirebabli
30

hope it will work for you

mark as brainliest please

Attachments:
Answered by BrainlySparrow
96

\Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{Question :}}}}}}}

Add this fraction 5/4 + 3/7

\Large{\bf{\pink{\mathfrak{\dag{\underline{\underline{Solution  :}}}}}}}

✠ As the denominators are different we have to take thr LCM. As they don't have any common factors so we will directly multiply. 4 × 7 = 28.

 \displaystyle{ \implies \:  \frac{5 \times 7}{4 \times 7} =  \frac{35}{28}  }

 \displaystyle{ \implies \:  \frac{3 \times 4}{7 \times 4} =  \frac{12}{28}  }

According to the question,

 \displaystyle{ \implies \:  \frac{35 + 12}{28} }

 \displaystyle{ \implies \:  \frac{47}{28} }

∴ 47/28 is the answer.

\Large{\bf{\blue{\mathfrak{\dag{\underline{\underline{More \:  Information :}}}}}}}

\bf{\dag}\:\:\underline{\textsf{Fraction Rules :}}\\\\\bigstar\:\:\sf\dfrac{A}{C} + \dfrac{B}{C} = \dfrac{A+B}{C} \\\\\bigstar\:\:\sf{\dfrac{A}{C} - \dfrac{B}{C} = \dfrac{A-B}{C}}\\\\\bigstar\:\:\sf\dfrac{A}{B} \times \dfrac{C}{D} = \dfrac{AC}{BD}\\\\\bigstar\:\:\sf\dfrac{A}{B} + \dfrac{C}{D} = \dfrac{AD}{BD} + \dfrac{BC}{BD} = \dfrac{AD+BC}{BD} \\\\\bigstar\:\:\sf\dfrac{A}{B} - \dfrac{C}{D} = \dfrac{AD}{BD} - \dfrac{BC}{BD} = \dfrac{AD-BC}{BD}\\\\\bigstar \:\:\sf \dfrac{A}{B} \div \dfrac{C}{D} = \dfrac{A}{B} \times \dfrac{D}{C} = \dfrac{AD}{BC}

Attachments:
Similar questions