Add up the coefficients of the first few powers of (a+b)^n by using Pascal’s triangle. Then by noting the pattern, determine the sum of the coefficients of (a+b)^79
Answers
Answered by
1
n sum
0 1 1
1 2 1 1
2 4 1 2 1
3 8 1 3 3 1
4 16 1 4 6 4 1
5 32 1 5 10 10 5 1
6 64 1 6 15 20 15 6 1
7 128 1 7 21 35 35 21 7 1
Sum of the coefficients of binomial expansion = 2^n
So sum of coefficients of
[tex](a+b)^n = \\.\ \ \ \ ^nC_0 a^n +^nC_1\ a^{n-1}\ b + ^nC_2\ a^{n-2}\ b^2 +... + ^nC_{n-1}\ a^1\ b^{n-1} + ^nC_n\ b^n \\ \\ Substitute\ a=1\ and\ b=1 \\ \\.\ \ \ \ 2^n = ^nC_0 +^nC_1+ ^nC_2 +... + ^nC_{n-1} + ^nC_n \\ [/tex]
0 1 1
1 2 1 1
2 4 1 2 1
3 8 1 3 3 1
4 16 1 4 6 4 1
5 32 1 5 10 10 5 1
6 64 1 6 15 20 15 6 1
7 128 1 7 21 35 35 21 7 1
Sum of the coefficients of binomial expansion = 2^n
So sum of coefficients of
[tex](a+b)^n = \\.\ \ \ \ ^nC_0 a^n +^nC_1\ a^{n-1}\ b + ^nC_2\ a^{n-2}\ b^2 +... + ^nC_{n-1}\ a^1\ b^{n-1} + ^nC_n\ b^n \\ \\ Substitute\ a=1\ and\ b=1 \\ \\.\ \ \ \ 2^n = ^nC_0 +^nC_1+ ^nC_2 +... + ^nC_{n-1} + ^nC_n \\ [/tex]
sweetysiri92:
Thanks
Similar questions