Adding consecutive odd numbers, find the perfect cube of 5.
Answers
Answered by
2
Step-by-step explanation:
Answered by
0
Answer:Si=1n+1 [(n + 1)n + (2i - 1)]
Step-by-step explanation: (n + 1)3 = n3 + 3n2 + 3n + 1
= Si=1n [n (n - 1) + (2i - 1)] + 3n2 + 3n + 1 [by (5)]
= n[n(n - 1)] + [1 + 3 + ... + (2n -1)] + 3n2 + 3n + 1
= [n3 + 2n2 + 3n + 1] + [1 + 3 + ... + (2n -1)]
= [n3 + 2n2 + 3n + 1] - (2n+1) + [1 + 3 + ... + (2n -1)] +(2n+1)
= (n2 + 2n +1)n + S i=1n+1 (2i - 1) = (n + 1)(n + 1)n + S i=1n+1 (2i - 1)
= Si=1n+1 [(n + 1)n + (2i - 1)]
Similar questions
India Languages,
4 months ago
India Languages,
4 months ago
Hindi,
4 months ago
English,
9 months ago
Science,
9 months ago
Biology,
1 year ago