CBSE BOARD XII, asked by harish21561, 6 months ago

Addition of five consecutive numbers is 270. Find out sum of the 1st and 4th Number.​

Answers

Answered by Anonymous
3

\large{\green{\bold{\underline{Let:}}}}

 \sf \: The \: five \: numbers \: be \: x, \: x+1, \: x+2, \: x+3 \: and \: x+4

\large{\red{\bold{\underline{Then:}}}}

\large{\orange{\bold{\underline{According \: To \: Question:}}}}

\rightarrow \sf \: x + (x+1) + (x+2) + (x+3) + (x+4) = 270 \\ \\ \rightarrow \sf \: x + x+1 + x+2 + x+3 + x+4 = 270 \\  \\ \rightarrow \sf \: 5x + 10 = 270 \\  \\ \rightarrow \sf \: 5x = 270 - 10 \\  \\  \rightarrow \sf \: 5x = 260 \\  \\ \rightarrow \sf \: x =  \frac{ \cancel260}{ \cancel5} \\  \\ \rightarrow \sf \: x = 52

\large{\red{\bold{\underline{Then:}}}}

 \sf \: Numbers \: are \: 52, \: 52+1, \: 52+2, \\ \sf \: 52+3 \: and \: 52+4.

\large{\blue{\bold{\underline{Finally:}}}}

 \sf \: Five \: consecutive \: numbers \: are \: 52, \: 53, \: 54, \\ \sf \: 55 \: and \: 56.

\large{\pink{\bold{\underline{But:}}}}

 \sf \: We \: need \: to \: find \: addition \: of \: 1st \\ \sf \: and \: 4th \: number.

 \rightarrow \sf \: 52 + 55 \\ \rightarrow \sf \: 107

\large{\green{\bold{\underline{Hence:}}}}

 \underline{ \underline{ \sf \: The \: required \: Answer \: is \: 107.}}

Answered by CuteCircle
0

Answer:

Explanation:

36 as follows:

x + x+1 = 71

x+ x = 70

2x = 70

x = 35

x+1 = 36

Similar questions