Math, asked by arora5322, 6 months ago

Addition of five consecutive numbers is 270. Find out sum of the 1st and 5th Number.​

Answers

Answered by ItzDinu
1

 \huge \mathscr{\orange {\underline{\pink{\underline {Answer:-}}}}}

x + x + 1 + x + 2 + x + 3 + x + 4 = 270

=>5x + 10 = 270

=>5x = 260

=>x = 260/5 = 52

∴ x + 1 + x + 4 = 2x + 5

= 2 × 52 + 5 = 109

So, the consecutive no. are 52,53,54,55,56. So the sum of 2nd and 5th no. =53+56=109.

Answered by Anonymous
0

Step-by-step explanation:

\large{\green{\bold{\underline{Let:}}}}

 \sf \: The \: five \: numbers \: be \: x, \: x+1, \: x+2, \: x+3 \: and \: x+4

\large{\red{\bold{\underline{Then:}}}}

\large{\orange{\bold{\underline{According \: To \: Question:}}}}

\rightarrow \sf \: x + (x+1) + (x+2) + (x+3) + (x+4) = 270 \\ \\ \rightarrow \sf \: x + x+1 + x+2 + x+3 + x+4 = 270 \\  \\ \rightarrow \sf \: 5x + 10 = 270 \\  \\ \rightarrow \sf \: 5x = 270 - 10 \\  \\  \rightarrow \sf \: 5x = 260 \\  \\ \rightarrow \sf \: x =  \frac{ \cancel260}{ \cancel5} \\  \\ \rightarrow \sf \: x = 52

\large{\red{\bold{\underline{Then:}}}}

 \sf \: Numbers \: are \: 52, \: 52+1, \: 52+2, \\ \sf \: 52+3 \: and \: 52+4.

\large{\blue{\bold{\underline{Finally:}}}}

 \sf \: Five \: consecutive \: numbers \: are \: 52, \: 53, \: 54, \\ \sf \: 55 \: and \: 56.

\large{\pink{\bold{\underline{But:}}}}

 \sf \: We \: need \: to \: find \: addition \: of \: 1st \\ \sf \: and \: 5th \: number.

 \rightarrow \sf \: 52 + 56 \\ \rightarrow \sf \: 108

\large{\green{\bold{\underline{Hence:}}}}

 \underline{ \underline{ \sf \: The \: required \: Answer \: is \: 108.}}

Similar questions