Math, asked by balajioutstander8, 10 months ago

adj(adj(......adj(A))) n times=?

det(adj(adj(......adj(A))) n times=?

please solve soon

I will follow you​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\textsf{A is a square matrix}

\underline{\textsf{To find:}}

\mathsf{det(adj(adj(........adj(A))))}\,\textsf{n times}

\underline{\textsf{Solution:}}

\underline{\textsf{Concept used:}}

\boxed{\begin{minipage}{6cm}$\textsf{If A be a square matrix order n,then}\\\\\mathsf{det(adj(A))=det(A)^{n-1}}$\end{minipage}}

\textsf{Let A be a square matrix of order m}

\textsf{Then,}

\mathsf{det(adj(adj(adj........adj(A))))}\;\;\textsf{n times}

\mathsf{=[det(adj(adj........adj(A)))]^{m-1}}\;\;\textsf{n-1 times}

\mathsf{=[[det(adj(........adj(A)))]^{m-1}]^{m-1}}\;\;\textsf{n-2 times}}}

\mathsf{=[det(adj(........adj(A)))]^(m-1)^2}}\;\;\textsf{n-2 times}

\textsf{Proceeding like this finally we get}

\mathsf{=[det(adj(A))]^(m-1)^{n-1}}\;\;\textsf{1 time}

\mathsf{=[det(A)^{m-1}]^(m-1)^{n-1}}\,

\mathsf{=[det(A)]^(m-1)^n}

\underline{\textsf{Answer:}}

\mathsf{det(adj(adj(........adj(A))))}\,\textsf{n times}\;\mathsf{=[det(A)]^(m-1)^n}

Answered by shreyasrivastav9628
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions